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Project Objectives 
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‣AC OPF Theory 
– Math foundation for convex relaxation of OPF 

‣DER optimization algorithms 
– Balanced mesh networks 

– Unbalanced radial networks 

– Centralized and distributed algorithms 

‣Modeling 
– SCE distribution systems, feeders & secondary circuits 

‣Implementation & demo 

‣Tech-2-market 



Project Objectives 
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‣Uniqueness 

– Guaranteed optimality and convergence 

– New framework for algorithm design 

‣Challenges 

– Mesh networks, unbalanced networks 

– Distributed algorithms with guarantees (stab, perf) 

– Numerical stability 

‣Performance metrics 

– Distributed algorithm for unbalanced radial network  
• size (demo’ed): 2,000 buses 

• time: 5 mins 

• optimality gap: 5% 
 

Algorithms scalable to 10K nodes and beyond  



2014 accomplishments 
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‣Convex relaxation of unbalanced network 

‣Distributed relaxation algorithms 

‣Distribution system modeling 

‣Implementation & demo 

 



2014 accomplishments 
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‣Convex relaxation for unbalanced network 

– Theory 

• Chordal relaxation (exploits sparsity) 

• Branch flow model, bus injection model 

– Algorithms 

• Extension of semidefinite algorithms to unbalanced 

radial networks 

• Centralized and decentralized algorithms 

– Simulations 

• Centralized alg: SCE 2,000-bus, 3 mins, 0% gap 

• Distributed alg: IEEE 123-bus, 3 mins, 0% gap 



Simulation results (Aug 2014 review) 

Simulation 
performance 

Target 
performance 

#instances (4 week) 8,064 8,064 

#instances solved 
(convergence) 

 
100% 

 
80% 

suboptimality gap 
(exactness) 

0%  5% 

solution time  
(per instance) 

 
2 min 

 
3 mins 

• Uses generalized BFM chordal relaxation using Rossi (~2000-bus) feeder 

• Much more numerically stable than BIM 

• Ran on 16 servers 

• Exactness (ev ratios): 16.6M ratios (= 2064 lines/instance x 8064 instances) 



2014 accomplishments 
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‣Distributed relaxation algorithms 

– Theory and algorithms: build on 

• Convex relaxation of OPF 

• Branch flow model 

• ADMM 

– Simulations 

• Balanced radial network: 2,000 buses, 3 mins, 0% 

optimality gap 

• Unbalanced radial network: ~100 buses, <4 mins, 0% 

optimality gap 



Computation time 

Network 
size N 

Diamete
r 
D 

Iterations Total Time Avg time 
T  

2,065 buses 64 links 1,114 1,153 sec 0.56 sec 

1,313 54 671 471 0.36 

792 53 524 226 0.29 

363 36 289 66 0.18 

108 16 267 16 0.14 

• Suboptimality gap : 0% 

• Compute time in distributed execution 

Scalability trend 

Regression: T  =  9.8x10-7 N  + 8.6x10-3 D 

 



Comparison: ADMM-based algs 

per-bus 
computation time 

x-update z-update 

Our algorithm 1.7 x 10-4 sec 5.1 x 10-4 sec 

CVX 2 x 10-1  sec 3 x 10-1  sec 

speedup 1,176x 588x 

per-bus computation time : time to solve 1 sample ADMM iteration for Rossi circuit  

with 2,065 buses, divided by 2,065, for both algorithms 

Huge speedup 

 Recent distributed OPF algorithms (inc ours) are 
ADMM-based 

 All these algorithms solve the ADMM 
subproblems in each update iteratively 

 Ours solves them in closed form 
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‣Distribution system modeling 

– SCE systems 

• 6 feeders (4KV, 12KV) 

• ~15,000 buses 

• <10% error compared with substation measurements 
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‣Implementation & demo 

– SCE Rossi feeder  

• ~2,000 buses 

• DER: inverters, HVAC, EV, pool pumps 

• Unbalanced multiphase 

• 4-week simulations 

 

optimized baseline 

peak load reduction: 8% 

energy cost reduction: 4% 
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‣Distributed OPF for unbalanced network 
– SCE Rossi feeder: ~2,000 buses 

– time: 5 mins 

– optimality gap: 5% 

 

 

Challenges and Contributions

Distribution Network Control

Why distribution network control?

Algorithm: Distributed Gradient Decent Performance Evaluation

Lingwen Gan, Steven Low California Institute of Technology

Theorem: In simple cases (single-phase), the algorithm converges to 
a local optimum, whose suboptimality gap is negligible.

voltage
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Blackout and voltage instability are more likely, 
if distribution network is not to be controlled, 
due to
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Heterogeneous devices
One common signal, 
devices respond differently.

Prevent blackout
Shape demand 
to match supply

Stabilize voltage
Adjust reactive power 
to sustain voltage

original 
problem

apply 

transformation

min
X

i

f (x i )

s.t . 0 x i 1

g(x1, . . . , xn ) 1

min L (x) =
X

i

f (x i ) − µ log(1− g(x))

s.t . 0 x i 1

de
co

up
le

Key loop: 
1. estimate gradient (in linear time) 
2. move and project

@x i
L

x i  Proj(x i − stepsize⇤@x i
L )

Interesting details: 
1. how to transform to obtain semi-linearity 
2. how to choose decouple parameter 
3. how to estimate gradient 
4. how to determine step size
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convex relaxation method

proposed algorithm

Obtains 70+ times speedup 
at no loss of optimality

Mac App demo available from  
http://www.its.caltech.edu/~lgan/
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‣T2M objectives 
– Validation: market, technology 

‣Key activities 
– IAB, Berkeley Haas C2M project 

– Prototype 

– Pilots, VC and strategic investments 
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Figure 7: The architecture of our distributed controller (software prototype for DER optimization).

1. Communication module that interacts with the environment using open standards.

2. Learning and estimation module that takesreal-time measurements, database updates and forecasts from the

communication module as the input and learns model parameters and estimates current network state.

3. DER optimization module that implements the optimization and control algorithm derived in first half of

Phase I.

Exper imental setup. To test, evaluate, and demonstrate the prototype, we will build a grid simulator, based

on PNNL’s GridLab-D simulator. The GridLab-D simulator is designed specifically for distribution grids which

are multiphase and have unbalanced loads. The overall testbed design is shown in Figure 8(a). The distributed
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Figure 8: (a) The architecture of the overall testbed. (b) Senario generator for evaluating and demonstrating the

prototype.

controller that implements our DER optimization software will treat the grid simulator as the reality. It receives

real-time measurements and slower-timescale updates, learns model parameters and estimates the network state,

computes a control command, and passes it down to the grid simulation for implementation. Separately the con-

troller and thegrid simulator send real-time data analytics for visualization and debugging. They also store data in

acloud database for future use.

The network simulator (see Figure 8(b)) builds on PNNL’s GridLab-D which is event-driven. Based on the

simulation scenario, thedistributed controller issues acommand that prompts GridLab-D simulation to progress to

the desired timestep and then paus. Network state information is then sent to the distributed controller, which then

updates its model, computes the next control action, and the cycle repeats.
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controller that implements our DER optimization software will treat the grid simulator as the reality. It receives

real-time measurements and slower-timescale updates, learns model parameters and estimates the network state,

computes a control command, and passes it down to the grid simulation for implementation. Separately the con-

troller and the grid simulator send real-time dataanalytics for visualization and debugging. They also store data in

a cloud database for future use.

The network simulator (see Figure 8(b)) builds on PNNL’s GridLab-D which is event-driven. Based on the

simulation scenario, thedistributed controller issues acommand that promptsGridLab-D simulation to progress to

the desired timestep and then paus. Network state information is then sent to the distributed controller, which then

updates its model, computes the next control action, and the cycle repeats.
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36 EAN Proprietary & Confidential - Do Not Copy 

EAN TAM – NB 
Disruption in the $15B to $50B range 

Smart Grid TAM $50B – Sw OT TAM > $10B (2014) 

Global Utilities Analytics TAM > $1.6B (2014) Largest number of M2M connection: Utilities >220M (2014) 

Majority M2M connections = Transportation + Utilities (2014-2024) 

 

EAN’s$IoT$
Gateway$

> mins secs 
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‣New R&D 
– Builds on existing results for fast timescale dynamic 

control & optimization 

– Scalable distributed real-time control with guaranteed 

stability and performance 

‣Implementation & pilots 
– Commercial grade software for DERMS 

– Pilots with industry 

‣Tech-to-market 
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‣Most important contributions 
– Math foundation for convex relaxation of OPF 

– Relaxation algorithms: unbalanced radial, distributed 

– Detailed feeder models 

– Implementation & demo  

‣Challenges 
– Numerical instability, scalability 

– Data for realistic and detailed models 

– T2M: prototype, pilots 
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GridLab-D simulator 

x = f x(t),u(t)( )

y = g x(t),u(t)( )

DERMS applications 

control 

estimate 

& learn 
x̂ = f̂ x̂(t),u(t);e(t)( )

ŷ = ĝ x̂(t),u(t)( )

e(t) = y(t)- ŷ(t)

u(t) = argmin
u

 OPF u; x̂(t)( )

y(t) u(t)

estimate state 

in fast timescale 


